skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burke, Martin D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Small molecule solutions to many contemporary societal challenges await discovery, but the artisanal and manual process via which this class of chemical matter is typically accessed limits the discovery of new functions. Automated assembly of (N‐methyl iminodiacetic acid) MIDA or (tetramethyl N‐methyl iminodiacetic acid) TIDA boronate building blocks via iterative C─C bond formation, an approach we call “block chemistry”, alternatively enables generalized and automated preparation of many different types of small molecules in a modular fashion. But in its current form, this engine cannot also leverage nitrogen atoms as iteration handles. Here, we disclose a new iteration‐enabling group, CbzT (p‐TIDA boronate‐substituted carboxybenzyl), that reversibly attenuates the reactivity of nitrogen atoms and enables generalized catch‐and‐release purification. CbzT is leveraged to achieve the automated modular synthesis of Imatinib (Gleevec), an archetypical clinically approved kinase inhibitor, in which building blocks are iteratively linked by both N─C and C─C bonds. This work substantially expands the types of small molecules that can be iteratively assembled in an automated modular fashion. It also advances the concept of intentionally developing chemistry that machines can do. 
    more » « less
    Free, publicly-accessible full text available August 11, 2026
  2. Abstract Many of the greatest challenges facing society today likely have molecular solutions that await discovery. However, the process of identifying and manufacturing such molecules has remained slow and highly specialist dependent. Interfacing the fields of artificial intelligence (AI) and synthetic organic chemistry has the potential to powerfully address both limitations. The Molecule Maker Lab Institute (MMLI) brings together a team of chemists, engineers, and AI‐experts from the University of Illinois Urbana‐Champaign (UIUC), Pennsylvania State University, and the Rochester Institute of Technology, with the goal of accelerating the discovery, synthesis and manufacture of complex organic molecules. Advanced AI and machine learning (ML) methods are deployed in four key thrusts: (1) AI‐enabled synthesis planning, (2) AI‐enabled catalyst development, (3) AI‐enabled molecule manufacturing, and (4) AI‐enabled molecule discovery. The MMLI's new AI‐enabled synthesis platform integrates chemical and enzymatic catalysis with literature mining and ML to predict the best way to make new molecules with desirable biological and material properties. The MMLI is transforming chemical synthesis and generating use‐inspired AI advances. Simultaneously, the MMLI is also acting as a training ground for the next generation of scientists with combined expertise in chemistry and AI. Outreach efforts aimed toward high school students and the public are being used to show how AI‐enabled tools can help to make chemical synthesis accessible to nonexperts. 
    more » « less
  3. Iterating machine learning with robotic experimentation uncovered higher-yielding conditions for a common coupling reaction. 
    more » « less
  4. Abstract Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3‐rich small molecules. The ability of boron‐containing functional groups to modify the reactivity of α‐radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p‐orbitals have a significant stabilizing effect on α‐radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N‐methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α‐radicals via σB‐Nhyperconjugation in a manner that allows site‐selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α‐radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p‐orbitals, but that hyperconjugation of tetrahedral boron‐containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α‐carbon. 
    more » « less